If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+18x-225=0
a = 6; b = 18; c = -225;
Δ = b2-4ac
Δ = 182-4·6·(-225)
Δ = 5724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5724}=\sqrt{36*159}=\sqrt{36}*\sqrt{159}=6\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{159}}{2*6}=\frac{-18-6\sqrt{159}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{159}}{2*6}=\frac{-18+6\sqrt{159}}{12} $
| 20=1/2n+26 | | 6x+2x-14=66 | | x=52x-0.05² | | (2x-6=x+3) | | 8x-10+2x=50 | | -5x+x=-7x | | 2x+1/6x-5=0 | | 6/x+3=8/x2+9 | | 3x+3=2x+32 | | 5x+5+-3+7x=180 | | 2y+8=2y-5 | | (x)=-x^2+5x-18 | | 8=1/2(x+1)(3x-7 | | 45=34y | | A={2x+3,4,8} | | 10-5e=-e-26 | | 6z-5=-9z-9 | | 45=34+1/2x | | (7-d)2=2 | | 3m-96=800 | | 0.50x+20=0.25x+30 | | (78-x)=(84-3x) | | (7x-7=6x+11) | | 1250c+25=800 | | 0.04x/0.05-4=112 | | 3y=9×27 | | 26=w/4+17 | | 2x60=100 | | 2x^2-22x=-36 | | 11x-7=101 | | F(-5)=6(3-x) | | 1/2=2/3e |